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A spectral algorithm based on the immersed boundary conditions (IBC) concept is devel-
oped for simulations of viscous flows with moving boundaries. The algorithm uses a fixed
computational domain with flow domain immersed inside the computational domain.
Boundary conditions along the edges of the time-dependent flow domain enter the algo-
rithm in the form of internal constraints. Spectral spatial discretization uses Fourier expan-
sions in the stream-wise direction and Chebyshev expansions in the normal-to-the-wall
direction. Up to fourth-order implicit temporal discretization methods have been imple-
mented. It has been demonstrated that the algorithm delivers the theoretically predicted
accuracy in both time and space. Performances of various linear solvers employed in the
solution process have been evaluated and a new class of solver that takes advantage of
the structure of the coefficient matrix has been proposed. The new solver results in a sig-
nificant acceleration of computations as well as in a substantial reduction in memory
requirements.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

‘‘Moving boundary problems” refer to situations where the boundaries of the flow domain change locations as a function
of time in a known and well prescribed manner. Such problems attracted attention of researchers from various fields for
many years and the relevant algorithms have been pursued with considerable interest particularly in the field of biomedical
engineering. Practical examples include peristaltic and pulsatile flows that define the flows in the esophagus and flows
through the vasculatures due to cardiac actions. Various available algorithms can be classified mainly as Lagrangian and
Eulerian [1]. Mixed methods, that are combinations of the Lagrangian and Eulerian techniques, have also been pursued [1].

In algorithms based on the Lagrangian concepts, each fluid element is followed individually resulting in a need for a coor-
dinate system that moves with the fluid. Mesh tangling and associated loss of numerical accuracy poses significant restric-
tions on the overall applicability of these methods [1].

The Eulerian algorithms rely on coordinate systems that are stationary in a laboratory frame of reference or may move in
a prescribed manner. Such algorithms can be divided for convenience into fixed grid, adaptive grid and various mapping
methods.

In the fixed grid methods, the grid is fixed in the solution domain and the locations of the moving boundaries are tracked
using either surface [2] or volume tracking procedures [3]. The surface tracking relies on a set of points whose motion is
tracked during the solution process allowing precise identification of the boundary locations; these boundaries are repre-
sented as a set of interpolated curves [3,4]. The volume tracking algorithms on the other hand work by reconstructing
. All rights reserved.
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the boundary whenever necessary instead of storing the boundary locations. The presence of a convenient marker within a
computational cell and its quantity form the basis of the various reconstruction methodologies. Different versions of volume
tracking algorithms exist, e.g., VOF (Volume of Fluid) [5], MAC (Marker and Cell) [6] and Level Set [7,8] methods. These meth-
ods are based on the standard spatial discretization schemes with low-order of accuracy for the field equations, which are
consistent with the diffused boundary locations resulting from the boundary reconstruction processes.

The adaptive grid methods use numerical mappings to adjust the grids at each time step so that one of the grid lines al-
ways overlaps with the boundary location. The computational costs of these methods are very high due to the requirement of
grid reconstruction at each time step. For example, the grid construction process contributed to about 75% of the total com-
putational cost for the problem discussed in [9]. The choice of spatial discretization technique has a smaller effect on the
overall computational costs. The requirement of high accuracy in solution may lead to numerous challenges as the total error
has contributions from the error in the grid generation as well as from the error due to spatial and temporal discretizations of
the field equations.

Analytical mapping of the irregular physical domain into a rectangular computational domain can help in improving the
accuracy at the cost of increased complexity of the field equations [10,18]. However, such mappings are available only for a
limited class of geometries [1] and reconstruction of the coefficient matrix during each time step can add to the overall com-
putational cost by a substantial margin [19].

Mixed Lagrangian–Eulerian methods rely on the combination of the concepts described above [1].
The increase of accuracy while maintaining computational efficiency poses a significant challenge for any algorithm to be

developed for moving boundary problems. One of the new concepts involves the use of the immersed or fictitious bound-
aries. This concept was first proposed by Peskin [11] in the context of cardiac dynamics and its various variants have been
reviewed in [12,13]. The common limitation is the spatial accuracy, as most of these methods are based on the low-order
finite-difference, finite-volume or finite-element technique [13–16]. The second, less known limitation is associated with
the use of the local fictitious forces required to enforce the no-slip and no-penetration conditions. These forces locally affect
the flow physics and this may lead to the incorrect estimates of derivatives of flow quantities, i.e., misrepresentation of the
local wall shear. It is difficult to estimate the potential error associated with such procedures, but it is known that in the case
of hydrodynamic instabilities the second derivative of mean flow plays a very strong role in determining the flow response,
and this derivative may not be predicted with sufficient accuracy using a procedure that changes flow physics (even locally).
This problem is likely to be more pronounced in the case of methods with higher spatial accuracy. Sharp interface method as
presented in [17] also uses Cartesian grid to enforce boundary conditions along the immersed boundaries that may be either
stationary or moving. The method relies on the level set description of the immersed interface along with finite-difference
discretization and special treatment for points close to the interface resulting in a sharp resolution of the interface. This
method requires modest programming effort and retains low spatial accuracy, similar to other immersed boundary methods
discussed earlier.

Spectral methods provide the lowest error for spatial discretization of the field equations but are generally limited to
solution domains with regular geometries. The first spectrally accurate implementation of the immersed boundary concept
was developed by Szumbarski and Floryan in the context of a fixed boundary problem [18] and is referred to as the immersed
boundary conditions (IBC) method in the rest of this discussion. This method does not use any fictitious boundaries or fic-
titious forces but relies on a purely formal construction of boundary constraints in order to generate the required closing
relations. The method is analogous to the fixed grid Eulerian methods. Spatial discretization relies on the spectral expansions
based on the Fourier and Chebyshev expansions in the stream-wise and normal-to-the-wall directions, respectively, and
thus provides ability to reach machine level accuracy. The construction of boundary constraints relies on the representation
of the physical boundaries in the spectral space and nullifying the relevant Fourier modes. Such implementation is limited to
geometries that can be represented by Fourier expansions but results in a gridless algorithm as all possible variations of
boundary geometries are described in terms of the Fourier coefficients only. The programming effort associated with mod-
eling the changes of geometry has been essentially removed as the only information required for specifying the new geom-
etry is reduced to a set of Fourier coefficients provided as an input to the code. The additional attractiveness of this concept is
associated with the precise mathematical formalism, high accuracy and sharp identification of the location of time-depen-
dent physical boundaries. The method has been implemented to study problems involving hydrodynamic instabilities in-
duced by surface roughness [19,20] and has been successfully extended to two-dimensional unsteady problems [21] as
well as moving boundary problems involving Laplace and biharmonic operators [22,23]. Extension of the IBC algorithm to
three-dimensional problems is fairly simple. The flow-field needs to be assumed to be periodic in two spatial dimensions,
which are discretized using Fourier expansions, while the remaining aperiodic dimension is discretized using Chebyshev
expansions. The boundary geometries/motions can be modeled using Fourier expansions in the periodic dimensions and
the enforcement of the boundary conditions would follow the concept of the IBC algorithm as presented in the case of
two-dimensional problems.

The present work has two goals. The first one deals with the extension of the IBC algorithm to moving boundary problems
described by the two-dimensional Navier–Stokes equations. The second one deals with the question of efficient implemen-
tation of the algorithm.

The paper is organized as follows: Section 2 provides description of the model problem used for presentation of the algo-
rithm. Section 3 describes numerical implementation of the flow boundary conditions. Section 4 discusses performance of
the algorithm using carefully selected test problems. In particular, Section 4.1 describes peristaltic flow problem while
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Section 4.2 considers pulsatile flow problem. Section 4.3 provides a brief discussion of issues associated with different tem-
poral discretization schemes. Section 4.4 discusses issues related to the efficient implementation of the algorithm. Section 5
provides a short summary of the main conclusions.
2. Problem formulation

The problem to be investigated consists of an incompressible unsteady viscous flow in a conduit bounded by moving
walls (see Fig. 1) whose shapes and motions are described by the following relations
yLðx; tÞ ¼ �1þ
Xn¼þ1

n¼�1
HðnÞL ðtÞeinax; yUðx; tÞ ¼ 1þ

Xn¼þ1
n¼�1

HðnÞU ðtÞeinax; ð2:1a;bÞ
where L and U stand for lower and upper walls, respectively. Here HðnÞL ¼ Hð�nÞ�
L and HðnÞU ¼ Hð�nÞ�

U are known and stars denote
complex conjugates. At any instant of time, the conduit extends to �1 in the x-direction and its geometry remain periodic
with the wavelength k ¼ 2p=a.

The reference flow, i.e., steady flow through a straight conduit, is the Poiseuille flow with the velocity and pressure fields
in the form
u0ðx; yÞ � u0ðyÞ ¼ 1� y2; v0ðx; yÞ ¼ 0; p0ðx; yÞ � p0ðxÞ ¼ �2x=Re; ð2:1Þ
where the motion of the fluid is in the positive x-direction, the Reynolds number Re is based on the half of the original con-
duit height L and the maximum velocity in the x-direction Umax, and the flow is driven by a constant negative pressure gra-
dient. The pressure and time scales have the form qtUmax=L and L2=t, respectively, where t stands for the kinematic viscosity
and q denotes the density of the fluid. Introduction of the wall motions induces flow modifications and thus the total flow
quantities can be expressed as
uðx; y; tÞ ¼ u0ðyÞ þ u1ðx; y; tÞ; vðx; y; tÞ ¼ v1ðx; y; tÞ; pðx; y; tÞ ¼ p0ðxÞ þ p1ðx; y; tÞ; ð2:3Þ
where u, v and p denote the total velocities and pressure, and u1; v1 and p1 denote velocity and pressure modifications in-
duced by the boundary motions. Substitution of (2.3) into the Navier–Stokes and continuity equations result in the following
form of governing equations
@tu1 þ Reðu0@xu1 þ u1@xu1 þ v1Du0 þ v1@yu1Þ ¼ �@xp1 þr2u1; ð2:4aÞ
@tv1 þ Reðu0@xv1 þ u1@xv1 þ v1@yv1Þ ¼ �@yp1 þr2v1; ð2:4bÞ
@xu1 þ @yv1 ¼ 0; ð2:4cÞ
where D � d=dy; r2 ¼ @xx þ @yy is the Laplacian and the symbol @ denotes partial differentiation with subscripts x, y and t
denoting the argument of the differentiation. The flow problem can be posed either for the complete flow quantities
ðu;v ; pÞ or for the flow modifications ðu1;v1; p1Þ. The latter approach was selected for the present work as it results in numer-
ically smaller nonlinear terms thereby providing faster convergence when iterative solution processes are employed.

The problem formulation needs to be supplemented with suitable initial and boundary conditions. The initial conditions
are taken to be in the form
uðx; y; 0Þ ¼ uiðx; yÞ; vðx; y; 0Þ ¼ v iðx; yÞ; yLðx; 0Þ ¼ yLiðxÞ; yUðx;0Þ ¼ yUiðxÞ; ð2:5a-bÞ
where uiðx; yÞ; v iðx; yÞ; yLiðxÞ; yUiðxÞ are considered to be known, and the boundary conditions at the solid walls are given by
-1
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Fig. 1. Sketch of the instantaneous form of the flow domain.
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u0ðyLðx; tÞÞ þ u1ðx; yLðx; tÞ; tÞ ¼ uLðx; tÞ ¼ 0; ð2:6aÞ
u0ðyUðx; tÞÞ þ u1ðx; yUðx; tÞ; tÞ ¼ uUðx; tÞ ¼ 0; ð2:6bÞ

v1ðx; yLðx; tÞ; tÞ ¼ vLðx; tÞ ¼ ðyLÞ
0 ¼

Xn¼þ1
n¼�1

ðHðnÞL Þ
0einax; ð2:6cÞ

v1ðx; yUðx; tÞ; tÞ ¼ vUðx; tÞ ¼ ðyUÞ
0 ¼

Xn¼þ1
n¼�1

ðHðnÞU Þ
0einax; ð2:6dÞ
where the ‘0’ sign denotes derivative with respect to time.
Introduction of the stream function W and elimination of pressure lead to a single field equation in terms of the unknown

modification of stream function W1 of the form
Re�1@t ½r2W1� � Re�1r2ðr2W1Þ þ ½u0@xðr2Þ � D2u0@x�W1 ¼ �@y½@xðu1u1Þ þ @yðu1v1Þ� þ @x½@xðu1v1Þ þ @yðv1v1Þ�; ð2:7Þ
where
uðx; y; tÞ ¼ u0ðyÞ þ u1ðx; y; tÞ ¼ DW0 þ @yW1 ¼ @yWT ; ð2:8aÞ
vðx; y; tÞ ¼ v1ðx; y; tÞ ¼ �@xW1 ¼ �@xWT ð2:8bÞ
where W0 ¼ �y3=3þ yþ 2=3 denotes the stream function of this flow and WT stand for the stream function of the complete
flow (i.e., the total stream function). The boundary conditions in terms of the stream function thus take the following form
@yW1ðx; yLðx; tÞ; tÞ ¼ �DW0ðyLðx; tÞÞ; ð2:9aÞ
@yW1ðx; yUðx; tÞ; tÞ ¼ �DW0ðyUðx; tÞÞ; ð2:9bÞ

@xW1ðx; yLðx; tÞ; tÞ ¼ �
Xn¼þ1

n¼�1
ðHðnÞL Þ

0einax; ð2:9cÞ

@xW1ðx; yUðx; tÞ; tÞ ¼ �
Xn¼þ1

n¼�1
ðHðnÞU Þ

0einax: ð2:9dÞ
We are interested in the determination of solution of the flow problem described by Eqs. (2.7)–(2.9) with the spectral accu-
racy in space and the desired accuracy in time. The main difficulty associated with the implementation of the spectral dis-
cretization in the spatial dimensions arises due to the irregularity and time-dependence of the solution domain.

In order to overcome problems associated with the spatial discretization, we select fixed rectangular computational do-
main extending over one period in the x-direction and extending sufficiently far in the y-direction so that the flow domain
always remains immersed inside the computational domain during the time interval of interest. If we denote the locations of
extremities of the walls as YU and YL within the time interval under investigation, then the y-extent of the computational
domain is set as ð�1� YL;1þ YUÞ without loss of generality. The spatial discretization is based on the use of Fourier series
in the x-direction due to periodicity of the geometry, and on expansions in terms of the Chebyshev polynomials in the y-
direction. We shall use standard definition of the Chebyshev polynomials and thus the y-extent of the computational domain
needs to be mapped onto (�1,1) (see Fig. 1) before calculations can proceed. The required mapping has the form
ŷ ¼ ½y� ð1þ YUÞ�Cþ 1; ð2:10Þ
where ŷ 2 h�1;1i and C ¼ 2=ð2þ YU þ YLÞ is a constant. Application of (2.10) transforms the governing equation into
Re�1@t ½r̂2W1� � Re�1r̂4W1 þ ½u0@xðr̂2Þ � C2 bD2u0@x�W1 ¼ �C@ŷ½@xðu1u1Þ þ @ŷðu1v1Þ� þ @x½@xðu1v1Þ þ C@ŷðv1v1Þ�;
ð2:11Þ
where r̂2 ¼ @xx þ C2@ ŷŷ and bD ¼ d=dŷ. Locations of the walls in the ðx; ŷÞ plane are given as
ŷLðx; tÞ ¼
Xn¼þ1

n¼�1
AðnÞL ðtÞeinax; ŷUðx; tÞ ¼

Xn¼þ1
n¼�1

AðnÞU ðtÞeinax; ð2:12a;bÞ
where Að0ÞL ðtÞ ¼ 1þ C½�2� YU þ Hð0ÞL ðtÞ�; AðnÞL ðtÞ ¼ CHðnÞL ðtÞ for n–0; Að0ÞU ðtÞ ¼ 1þ C½�YU þ Hð0ÞU ðtÞ�; AðnÞU ðtÞ ¼ CHðnÞU ðtÞ for n–0.
The boundary conditions at the transformed boundaries become
@ŷW1ðx; ŷLðx; tÞ; tÞ ¼ �bDW0ðŷLðx; tÞÞ; ð2:13aÞ
@ŷW1ðx; ŷUðx; tÞ; tÞ ¼ �bDW0ðŷUðx; tÞÞ; ð2:13bÞ

W1ðx; ŷLðx; tÞ; tÞ ¼ �
Xn¼þ1

n¼�1;n–0

ðinaCÞ�1ðAðnÞL Þ
0einax þ CLðtÞ; ð2:13cÞ

W1ðx; ŷUðx; tÞ; tÞ ¼ �
Xn¼þ1

n¼�1;n–0

ðinaCÞ�1ðAðnÞU Þ
0einax þ CUðtÞ; ð2:13dÞ
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where CUðtÞ and CLðtÞ are time-dependent constants resulting from integration of Eqs. (2.9c) and (2.9d), respectively.
The solution can be represented in the form of Fourier expansion
W1ðx; ŷ; tÞ ¼
Xn¼þ1

n¼�1
UðnÞðŷ; tÞeinax �

Xn¼þNM

n¼�NM

UðnÞðŷ; tÞeinax; ð2:14Þ
where UðnÞðŷ; tÞ ¼ Uð�nÞ� ðŷ; tÞ. Substitution of (2.14) into Eq. (2.11) and separation of Fourier components lead to a system of
partial differential equations for UðnÞ; n 2 h0;NMi, of the type
Re�1@t ½C2 bD2 � ðnaÞ2�UðnÞ � Re�1½C4 bD4 � 2C2ðnaÞ2 bD2 þ ðnaÞ4�UðnÞ þ ½inaC2u0
bD2 � iðnaÞ3u0 � inaC2 bD2u0�UðnÞ

¼ �inaCbDðR1ÞðnÞ � C2 bD2ðR2ÞðnÞ � ðnaÞ2ðR2ÞðnÞ þ inaCbDðR3ÞðnÞ; ð2:15Þ
where the nonlinear velocity products are periodic and thus are expressed in terms of the relevant Fourier expansion in the
form
½ðu1u1Þ; ðu1v1Þ; ðv1v1Þ�ðx; ŷ; tÞ ¼
Xn¼þNM

n¼�NM

½ðR1ÞðnÞ; ðR2ÞðnÞ; ðR3ÞðnÞ�ðŷ; tÞeinax: ð2:16Þ
Four types of temporal discretizations have been used. The third-order, implicit, backward-difference method results in the
following relations
�Re�1C4 bD4 þ 11C2Re�1Dt�1=6þ 2n2a2C2Re�1 þ inaC2u0

� �bD2
h
þ �n4a4Re�1 � 11n2a2C2Dt�1Re�1=6� inaC2 bD2u0 � in3a3u0

� �i
UðnÞsþ1

� �Jþ1

¼ �inaCbDðR1ÞðnÞsþ1 � C2 bD2ðR2ÞðnÞsþ1 � ðnaÞ2ðR2ÞðnÞsþ1 þ inaCbDðR3ÞðnÞsþ1

h iJ

þ 3Re�1Dt�1 C2 bD2 � ðnaÞ2
h i

UðnÞs � ð3=2ÞRe�1Dt�1 C2 bD2 � ðnaÞ2
h i

UðnÞs�1

þ ð1=3ÞRe�1Dt�1 C2 bD2 � ðnaÞ2
h i

UðnÞs�2; n 2 h0;NMi; ð2:17Þ
while similar relations resulting from the first-, second- and fourth-order implicit methods are shown in Appendix A. In the
above, the subscript s denotes the time step and Dt stands for the (constant) length of the time step. The solution is obtained
in an iterative manner during each time step with the superscript J denoting the iteration number. Relation (2.17) has the
form of an inhomogeneous ordinary differential equation for UðnÞsþ1. The following discussion will be carried out in the context
of the third-order, implicit, backward-difference scheme while the relevant relations for the other schemes can be readily
deduced. A detailed discussion of issues associated with the numerical implementation and performance of different tem-
poral schemes is given in Section 4.3.

The unknown function UðnÞsþ1 can be represented in terms of expansions based on the Chebyshev polynomials in the form
UðnÞsþ1ðŷÞ ¼
Xk¼1
k¼0

ZðnÞk;sþ1TkðŷÞ �
Xk¼NT

k¼0

ZðnÞk;sþ1TkðŷÞ; ð2:18Þ
where Tk denotes the Chebyshev polynomial of kth order and ZðnÞk;sþ1 denotes the unknown coefficients of the expansion. The
modal functions associated with the Fourier expansions of the nonlinear terms can also be expressed in terms of expansions
based on the Chebyshev polynomials in the form
ðR1ÞðnÞsþ1; ðR2ÞðnÞsþ1; ðR3ÞðnÞsþ1

h i
ðŷÞ ¼

Xk¼NT

k¼0

ðeR1ÞðnÞk;sþ1; ðeR2ÞðnÞk;sþ1; ðeR3ÞðnÞk;sþ1

h i
TkðŷÞ: ð2:19Þ
Relations (2.18 and (2.19) are substituted into (2.17) and Galerkin procedure [23] is used to develop a set of algebraic equa-
tions for the unknown coefficients ZðnÞk;sþ1 in the form
Xk¼NT

k¼0

�Re�1C4 Tj; bD4Tk

D E
þ 11C2Re�1Dt�1=6þ2n2a2C2Re�1
� �

Tj; bD2Tk

D Eh
þinaC2 Tj;u0

bD2Tk

D E
þ �n4a4Re�1�11n2a2C2Dt�1Re�1=6
� �

Tj;Tk

� �
� inaC2 Tj; bD2u0Tk

D E
� in3a3 Tj;u0Tk

� �i
ZðnÞk;sþ1

� �Jþ1

¼
Xk¼NT

k¼0

�inaC Tj; bDTk

D E
ðeR1ÞðnÞk;sþ1�C2 Tj; bD2Tk

D E
ðeR2ÞðnÞk;sþ1�ðnaÞ2 Tj;Tk

� �
ðeR2ÞðnÞk;sþ1þ inaC Tj; bDTk

D E
ðeR3ÞðnÞk;sþ1

h iJ

þ
Xk¼NT

k¼0

ðReDtÞ�1 C2 Tj; bD2Tk

D E
�ðnaÞ2 Tj;Tk

� �h i
3ZðnÞk;s�ð3=2ÞZðnÞk;s�1þð1=3ÞZðnÞk;s�2

h i
; n2 h0;NMi; j2 h0;NTi; ð2:20Þ
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where the inner product is defined as hfjðŷÞ; gkðŷÞi ¼
R 1
�1 fjðŷÞgkðŷÞx̂ðŷÞdŷ and x̂ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ŷ2

p
denotes the weight function.

The inner products are evaluated using the orthogonality properties of the polynomials. Eq. (2.20) leads to NT þ 1 algebraic
equations for each Fourier mode; these equations are coupled through the nonlinear terms. Since the Chebyshev polynomials
do not individually satisfy the boundary conditions, special construction is required to ensure that the global solution (2.14)
satisfies the boundary conditions. These conditions will be accommodated in the Tau-like manner [24] where the four high-
est projection equations for each Fourier mode are dropped in order to make space for the relations that ensure that the dis-
cretized boundary conditions are satisfied. The numerical treatment and discretization of boundary conditions are discussed
in the next Section and show additional source of coupling among different Fourier modes.

The evaluation of the nonlinear modal functions RðnÞ1 ; RðnÞ2 and RðnÞ3 involves determination of velocity components u1 and
v1 in the physical space, evaluation of velocity products in the physical space, evaluation of the Fourier transforms of the
velocity products and, finally, evaluation of the coefficients of Chebyshev expansions representing modal functions of the
velocity products. Aliasing errors are controlled through the use of the padding method [24]. The padding method requires
evaluation of the velocity components u1 and v1 in ð2MM þ 1Þ locations in the x-direction for each y-location where
MM P 1:5NM . In order to take advantage of the properties of the FFT algorithm, it is recommended to select values of MM

equal to a power of 2. The FFT algorithm generates ð2MM þ 1Þ modes but only modes h�NM ;NMi are retained. The cost of
evaluation of the nonlinear terms is one of the dominant factors that affect the total computational cost per iteration. The
iterations continue until the change in the magnitude of the Chebyshev coefficients for two consecutive iterations is less than
the convergence criteria which, for all results presented in this paper, were set to 10�14.
3. Numerical treatment of boundary conditions

The flow boundary conditions are imposed using the immersed boundary conditions (IBC) concept. Transformation (2.10)
ensures that the boundary extremities at any given time are contained within the computational domain ŷ 2 h�1;1i. The
flow boundary conditions are to be enforced along the lines ŷLðx; sþ 1Þ and ŷUðx; sþ 1Þ that define the physical boundaries
in the transformed coordinates ðx; ŷÞ, where the locations of these lines are represented in the form
ŷLðx; sþ 1Þ �
Xn¼þNA

n¼�NA

AðnÞL;sþ1einax; ŷUðx; sþ 1Þ �
Xn¼þNA

n¼�NA

AðnÞU;sþ1einax: ð3:1a;bÞ
The following discussion will be carried out in the context of the upper wall with the developments for the lower wall being
analogous. In order to enforce the boundary conditions (2.13a,d) at time sþ 1 one needs to evaluate
ð@ ŷW1ÞU;sþ1 � @ ŷW1ðx; ŷUðx; sþ 1Þ; sþ 1Þ and ðW1ÞU;sþ1 � W1ðx; ŷUðx; sþ 1Þ; sþ 1Þ along the time-dependent line ŷUðx; sþ 1Þ
defining the upper wall of the channel.

The terms ð@ŷW1ÞU;sþ1 and ðW1ÞU;sþ1 are periodic in x with the period k ¼ 2p=a and thus can be expressed in terms of Fou-
rier series as
ð@ŷW1ÞU;sþ1 ¼
Xn¼þNU

n¼�NU

UðnÞsþ1einax; ðW1ÞU;sþ1 ¼
Xn¼þNU

n¼�NU

V ðnÞsþ1einax; ð3:2a;bÞ
where the value of NU that needs to be used will be discussed later in the text. Since the flow representation used in the
computations is limited to NM þ 1 modes (see Eq. (2.14)), even if NU > NM only the first ðNM þ 1Þ terms in (3.2) can be ac-
counted for. The components in (3.2) can also be evaluated along the wall at time sþ 1 using the discretized form of the
solution, i.e.,
ð@ŷW1ÞU;sþ1 ¼
Xn¼þNM

n¼�NM

Xk¼NT

k¼0

ZðnÞk;sþ1
bDTk ŷUðx; sþ 1Þð Þeinax; ð3:3aÞ

ðW1ÞU;sþ1 ¼
Xn¼þNM

n¼�NM

Xk¼NT

k¼0

ZðnÞk;sþ1Tk ŷUðx; sþ 1Þð Þeinax: ð3:3bÞ
Chebyshev polynomials and their derivatives evaluated at the wall, i.e., TkðŷUðx; sþ 1Þ and bDTkðŷUðx; sþ 1Þ, are periodic func-
tions of x and thus can be expressed in terms of Fourier expansion as follows
Tk ŷUðx; sþ 1Þð Þ ¼
Xm¼þNS

m¼�NS

ðwUÞðmÞk;sþ1eimax; bDTk ŷUðx; sþ 1Þð Þ ¼
Xm¼þNS

m¼�NS

ðdUÞðmÞk;sþ1eimax; ð3:4a;bÞ
where maxðNSÞ ¼ NT NA. The method for evaluation of coefficients ðwUÞðmÞk;sþ1 and ðdUÞðmÞk;sþ1 is explained in Appendix B.
Substitution of (3.4b) into (3.3a) gives
ð@ŷW1ÞU;sþ1 ¼
Xn¼þNM

n¼�NM

Xm¼þNS

m¼�NS

Xk¼NT

k¼0

ZðnÞk;sþ1ðdUÞðmÞk;sþ1eiðnþmÞax ¼
Xh¼þNU

h¼�NU

Xn¼þNM

n¼�NM

Xk¼NT

k¼0

ZðnÞk;sþ1ðdUÞðh�nÞ
k;sþ1eihax; ð3:5Þ
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where h ¼ nþm and NU ¼ NT NA þ NM . Comparison of (3.2a) with (3.5a) along with change of indices in (3.5a), i.e., n! m and
h! n, give
UðnÞsþ1 ¼
Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðdUÞðn�mÞ
k;sþ1 : ð3:6aÞ
Substitution of (3.4a) into (3.3b), followed by similar operations and comparison of the results with (3.2b), give
V ðnÞsþ1 ¼
Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðwUÞðn�mÞ
k;sþ1 : ð3:6bÞ
The function ðbDW0ÞU;sþ1 is known from the reference flow and can be expressed as
ðbDW0ÞU;sþ1 ¼
Xn¼þ1

n¼�1
FðnÞU;sþ1einax: ð3:7Þ
Substitution of (3.2), (3.6) and (3.7) into (2.13b,d) leads to boundary conditions along the upper wall while those for the low-
er wall can be derived following similar steps. The discretized boundary constraints for the both walls take the form
Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðdUÞðn�mÞ
k;sþ1 ¼ �FðnÞU;sþ1; jnjP 0; ð3:8aÞ

Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðdLÞðn�mÞ
k;sþ1 ¼ �FðnÞL;sþ1; jnjP 0; ð3:8bÞ

Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðwUÞðn�mÞ
k;sþ1 ¼ �ðinaCÞ�1ðAðnÞU Þ

0
sþ1; jnjP 1; ð3:8cÞ

Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðwLÞðn�mÞ
k;sþ1 ¼ �ðinaCÞ�1ðAðnÞL Þ

0
sþ1; jnjP 1; ð3:8dÞ

Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðwUÞð�mÞ
k;sþ1 ¼ CUðsþ 1Þ; ð3:8eÞ

Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1ðwLÞð�mÞ
k;sþ1 ¼ CLðsþ 1Þ; ð3:8fÞ
that are enforced for jnj 6 Nm. Relations obtained for jnj > Nm can be used as a measure of error. The form of constants
CLðsþ 1Þ and CUðsþ 1Þ that appear in Eq. (3.8e-f) can be determined using either the constant volume flux or the constant
pressure gradient constraint. For convenience, we have selected the former one for this presentation, i.e., we assumed that
the flow rates in the smooth reference conduit and in the deforming conduit remained the same.

Volume flux Q along the conduit can be evaluated by integrating the x-velocity component across the conduit, i.e.,
Qðx; sþ 1Þ ¼
Z ŷU

ŷL

@WT

@ŷ

� �
sþ1

dŷ ¼ WTðx; ŷUðx; sþ 1Þ; sþ 1Þ �WTðx; ŷLðx; sþ 1Þ; sþ 1Þ: ð3:9Þ
where according to the definition of the total stream function
WT x; ŷLðx; sþ 1Þ; sþ 1ð Þ ¼ W0 x; ŷLðx; sþ 1Þð Þ þW1 x; ŷLðx; sþ 1Þ; sþ 1ð Þ; ð3:10aÞ
WT x; ŷUðx; sþ 1Þ; sþ 1ð Þ ¼ W0 x; ŷUðx; sþ 1Þð Þ þW1 x; ŷUðx; sþ 1Þ; sþ 1ð Þ: ð3:10bÞ
Values of W0 evaluated along the lower and upper walls represent known functions of t and x that are periodic in x and can be
expressed as
W0 ŷLðx; sþ 1Þð Þ ¼
Xn¼þNM

n¼�NM

NðnÞL

� �
sþ1

einax; W0 ŷUðx; sþ 1Þð Þ ¼
Xn¼þNM

n¼�NM

NðnÞU

� �
sþ1

einax: ð3:11Þ
The volume flux represents an x-periodic function that can be written in the form of a Fourier expansion
Qðx; sþ 1Þ ¼
Xn¼þNM

n¼�NM

qðnÞðsþ 1Þeinax; ð3:12Þ
where the zero term, i.e., qð0Þ, represents the net mass flux along the conduit. The value of qð0Þðsþ 1Þ is assumed in this anal-
ysis to be known and independent of time, and equal to the flow rate of the reference flow, i.e., qð0Þ ¼ 4

3.
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Substitution of (2.13), (3.10)–(3.12) into Eq. (3.9) and extraction of mode zero results in
CUðsþ 1Þ ¼ Q ð0Þ þ CLðsþ 1Þ þ Nð0ÞL � Nð0ÞU : ð3:13Þ
One of the constants, either CU or CL, can be selected arbitrarily and the other one follows from (3.13). In the description
given below the latter one has been selected arbitrarily by introducing condition WT ¼ 0 at a conveniently selected point
x ¼ x0 at the lower wall resulting in
CLðsþ 1Þ ¼ �Nð0ÞL þ m
n¼þNA

n¼�NA ;n–0
ðinaCÞ�1ðAðnÞL Þ

0
sþ1einax0 : ð3:14Þ
Substitution of (3.14) into (3.13) gives
CUðsþ 1Þ ¼ �Nð0ÞU þ
Xn¼þNA

n¼�NA ;n–0

ðinaCÞ�1ðAðnÞL Þ
0
sþ1einax0 þ qð0Þ: ð3:15Þ
Substitution of (3.14) and (3.15) into (3.8e–f) results in the form of the closing conditions useful for numerical implemen-
tation, i.e.,
Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1 wðmÞ
�

k;sþ1

� �
L
¼ �Nð0ÞL þ

Xn¼þNA

n¼�NA ;n–0

ðinaCÞ�1ðAðnÞL Þ
0
sþ1einax0 ; ð3:16aÞ

Xm¼þNM

m¼�NM

Xk¼NT

k¼0

ZðmÞk;sþ1 wðmÞ
�

k;sþ1

� �
U
¼ �Nð0ÞU þ

Xn¼þNA

n¼�NA ;n–0

ðinaCÞ�1ðAðnÞL Þ
0
sþ1einax0 þ qð0Þ: ð3:16bÞ
Eqs. (2.20), (3.8a–d) and (3.16) form a complete set of algebraic equations for the unknown coefficients
ZðnÞk;sþ1; k ¼ 0; . . . :;NT ; n ¼ 0; . . . :;NM . A solution of this set moves calculations forward by one time step. The performance
of the algorithm and various methods of solution of the algebraic equations are discussed in the next section.

4. Performance of the algorithm

Two different problems have been selected to test and characterize the performance of the algorithm. The test problems
involve (i) peristaltic flow and (ii) pulsatile flow. The selection of these test problems enables us to show the applicability of
the proposed algorithm in solving flow problems of considerable practical interest, particularly in the field of biomedical
engineering.

4.1. Peristaltic flow

4.1.1. Problem prototype
A general form of peristaltic flow can be modelled by considering peristaltic wave traveling along the conduit walls,

whose locations can be described as
yLðx; tÞ ¼ �1þ
Xn¼þNM

n¼�Nm ;n–0

HðnÞL einaðx�ctÞ; yUðx; tÞ ¼ 1þ
Xn¼þNM

n¼�Nm ;n–0

HðnÞU einaðx�ctÞ; ð4:1a;bÞ
where c denotes the phase speed of the wave and a stands for its wave number. The simplest situation corresponds to the
wave profiles described by only one Fourier mode, resulting in the wall motions described by
yLðx; tÞ ¼ �1þ S cos½aðx� ctÞ� ¼ �1þ ð0:5Seiaðx�ctÞ þ CCÞ; ð4:2aÞ
yUðx; tÞ ¼ 1� S cos½aðx� ctÞ� ¼ 1� ð0:5Seiaðx�ctÞ þ CCÞ; ð4:2bÞ
where S stands for the amplitude of the wave and CC denotes complex conjugate. Fig. 2 illustrates changes in the location of
the walls as a function of time.

Peristaltic flow represents a convenient test problem because it can be converted into a steady, fixed boundary problem in
the moving frame of reference ðX; yÞ using Galileo transformation in the form
X ¼ x� ct: ð4:3Þ
This is an easier problem and its solution provides a convenient comparison problem for the direct numerical solution of the
time-dependent, moving boundary problem in the fixed frame of reference. In addition, this problem provides a convenient
test for characterization of the accuracy of spatial discretization.

The full problem in the moving frame of reference ðX; yÞ takes the form
�Re�1r4W1 þ ½ðu0 � cÞ@Xðr2Þ � D2u0@X �W1 ¼ �@y½@Xðu1u1Þ þ @yðu1v1Þ� þ @X ½@Xðu1v1Þ þ @yðv1v1Þ� ð4:4Þ
where r2 ¼ @XX þ @yy and the boundary shapes take the forms
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Fig. 2. Locations of the conduit’s walls deformed by peristaltic wave described by Eq. (4.2) with the amplitude S = 0.25, the wave number a ¼ 1:0 and the
phase speed c ¼ p at times t = 0, T/4, T/2, 3T/4 and T, where T denotes one time period.
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yLðXÞ ¼ �1þ ð0:5SeiaX þ CCÞ; yUðXÞ ¼ 1� ð0:5SeiaX þ CCÞ: ð4:5a;bÞ
The boundary conditions in the moving frame of reference ðX; yÞ have the form
uðX; yL;UðXÞÞ ¼ 0; vðyL;UðXÞÞ ¼ �c
Xn¼þNM

n¼�NM ;n–0

inaHðnÞL;Ueinax: ð4:6a;bÞ
The stationary problem (4.4)–(4.6) shall be referred to as the model problem #1, and will be solved using the steady version
of the technique discussed in the previous Sections.

The same problem expressed in the fixed frame of reference ðx; yÞ consists of the field Eq. (2.7), boundary conditions (2.9)
with wall motions given by (4.2). This problem can be solved directly as a time-dependent, moving boundary problem – we
shall refer to this problem as the model problem #2. The solution of the model problem #1 is used as initial condition for the
model problem #2 in various tests discussed later in the text, unless explicitly stated otherwise.

4.1.2. Solution of the model problem #1
Model problem #1 provides an opportunity to demonstrate the spectral accuracy of the spatial discretization. In order to

have a meaningful discussion of error, we have produced a machine-accurate reference solution for this problem using the
Domain Transformation (DT) method where the irregular flow domain is analytically mapped into a regular computational
domain resulting in the classical treatment of boundary conditions. We have used the same spatial discretization as in the
case of the IBC method, i.e., Fourier expansions in the X-direction and Chebyshev expansions in the y-direction. Details of the
DT method can be found in Appendix C.

We define error in the evaluation of the u- and v-velocity components at any location ðX; yÞ as
uerðX; yÞ ¼ uIBCðX; yÞ � uDTðX; yÞ; verðX; yÞ ¼ v IBCðX; yÞ � vDTðX; yÞ; ð4:7a;bÞ
where the subscript ‘IBC’ denotes solution obtained using the IBC algorithm and the subscript ‘DT’ denotes the machine-
accurate reference solution determined using the DT method. We shall use the L1 norms defined as
kuerk1 ¼ sup
06X62p=a

yLðXÞ6X6yU ðXÞ

juerðX; yÞj; kverk1 ¼ sup
06X62p=a

yLðXÞ6X6yU ðXÞ

jverðX; yÞj; ð4:8a;bÞ
as a measure of error over the whole flow domain. Error in the enforcement of flow boundary conditions is of special interest
and is measured using the L1 norms defined as
kuer;BCðXÞk1 ¼ sup
06X62p=a

uer;BCðXÞð ÞL
		 		; uer;BCðXÞð ÞU

		 		
 �
; ð4:9aÞ

kver;BCðXÞk1 ¼ sup
06X62p=a

ver;BCðXÞð ÞL
		 		; ver;BCðXÞð ÞU

		 		
 �
; ð4:9bÞ
where
ðuer;BCðXÞÞL;U ¼ uðX; yL;UðXÞÞ; ðver;BCðXÞÞL;U ¼ vðX; yL;UðXÞÞ � ðvwallðXÞÞL;U : ð4:10a;bÞ
Here the terms ðvwallðXÞÞL and ðvwallðXÞÞU stand for the actual velocities of the lower and upper walls, respectively. We shall
focus further discussion on the error in the u-velocity component, i.e., uer . This error is related to the error of the y-derivative
of the stream function which needs to be evaluated numerically and thus evaluation of u is potentially less accurate than
evaluation of v.
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The Chebyshev expansions (2.18) with coefficients calculated using the Galerkin procedure are expected to deliver spec-
tral accuracy in the y-direction with the increasing number of terms NT . The validation of this fact is illustrated in Fig. 3. This
figure also shows that the use of a single norm kuer;BCk1 as an error measure could be misleading when the number of Cheby-
shev polynomials employed in the computations is not adequate. The reason behind this property can be explained with the
aid results displayed in Fig. 4, which shows formation of boundary layers in the distribution of modal functions in the zones
around the walls. Although the discretization in the y-direction using the Chebyshev expansions is fairly standard, the exis-
tence of boundary layers creates special problems. Inadequate number of polynomials can lead to spurious oscillations in the
distribution of the modal functions and increase the error in the overall solution although the boundary conditions may still
be satisfied with very high accuracy (see Fig. 3). In most cases, 60 Chebyshev polynomials provide machine accuracy. How-
ever, when the wavelengths of the peristaltic wave become shorter (a increases), higher Fourier modes begin to play impor-
tant role and one needs to increase the number of Chebyshev polynomials in order to resolve the wall boundary layers with
reasonable accuracy. Fig. 4 shows that these layers become extremely thin for larger values of a and for higher Fourier
modes. Modal functions change very rapidly inside these layers while they are nearly zero in the rest of the domain.

The convergence of the truncated Fourier series is pertinent to the second aspect of the spatial discretization, i.e., accuracy
of discretization in the x-direction. Chebyshev norm defined as
Fig. 3.
comput
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kDUðnÞkx̂ ¼
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s
; x̂ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
ð4:11Þ
is used as a measure of the magnitude of the derivative of the modal function UðnÞ (i.e., the u-velocity component). Results
displayed in Fig. 5 demonstrate that this norm decreases exponentially as a function of the mode number n.

The next question of interest is the identification of the number of Fourier modes NM required for a desired level of accu-
racy of the solution. Results displayed in Fig. 6 demonstrate that when a sufficient number of Chebyshev polynomials is used
(see Fig. 3), the maximum error over the computational domain becomes equal to the maximum error in the enforcement of
flow boundary conditions, i.e.,
kuerk1 ¼ kuer;BCk1 and kverk1 ¼ kver;BCk1 when
d

dNT
ðkuerk1; kverk1Þ � 0: ð4:12Þ
Therefore, the number of Fourier modes NM used in the computations contributes only to the error in the enforcement of
flow boundary conditions while the magnitude of the error inside the solution domain is determined by the number of
Chebyshev polynomials. This fact is further substantiated through the results displayed in Fig. 7, which demonstrate that
the error reaches maximum around the wall and decreases rapidly as one moves away from the wall. Thus, one can use
the norm kuer;BCk1 to quantify the maximum error for any number of Fourier modes NM assuming that a sufficient number
of Chebyshev polynomials NT have been used.

Fig. 8 shows distribution of error in the enforcement of flow boundary conditions for the u- and v-velocity components
along the upper wall. It can be seen that the errors oscillate along the conduit and that the locations of the maxima of the
amplitudes overlap with the location where the peristaltic wave maximizes conduit opening. This figure also illustrates that
the magnitude of the error in the u-velocity component is slightly higher than that in the v-velocity component, as had al-
ready been pointed out in the preceding discussion.

Variations of the error kuerk1 as a function of the amplitude S of the peristaltic wave for fixed values of its wave number a,
and as a function of its wave number a for fixed amplitudes S are illustrated in Figs. 9 and 10, respectively. The results shown
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demonstrate that for certain combinations of a and S, the accuracy can be maintained at the machine level. However, the
error increases almost exponentially when values of a and S reach certain critical threshold. The error can be controlled
by increasing the number of Fourier modes used in the computations and/or by using the over-constraint formulation



Fig. 7. Distribution of the absolute value of the error uerðX; yÞ (see Eq. (4.7)) around the upper wall for the model problem #1 (see Eqs. (4.4)–(4.6)) for the
peristaltic wave with the wave number a ¼ 1:0, the amplitude S = 0.1 and the phase speed c ¼ p. Computations have been carried out for the flow Reynolds
number Re = 100 using NM ¼ 20 Fourier modes and NT ¼ 100 Chebyshev polynomials.

x

(u
er

,B
C
) U

(v
er

,B
C
) U

0 1 2 3 4 5 6
-8E-11

0

8E-11

-2E-11

0

2E-11

ver

uer

Fig. 8. Distribution of the boundary errors ðuer;BCÞU (see Eq. (4.10a), solid line) and ðver;BCÞU (see Eq.(4.10b), dash line) for the model problem #1 (see Eqs.
(4.4)–(4.6)) for the peristaltic wave with the phase speed c ¼ p, the amplitude S = 0.05 and the wave number a ¼ 1. Computations have been carried out for
the flow Reynolds number Re = 100 using NM ¼ 15 Fourier modes and NT ¼ 80 Chebyshev polynomials.

S

||u
er
|| ∞

0.02 0.04 0.06 0.08 0.1
10-11

10-10

10-9

10-8

10-7

α=0.5

1.0

5.0

10.0

15.0

Fig. 9. Variations of the kuerðXÞk1 norm (see Eq. (4.8)) as a function of the amplitude S of the peristaltic wave with the phase speed c ¼ p and with selected
values of the wave number a in the case of flow with the Reynolds number Re = 100 (model problem#1, see Eqs. (4.4)–(4.6)). The dashed and solid lines
correspond to results obtained with the NM ¼ 10 and 15 Fourier modes, respectively. NT ¼ 80 Chebyshev polynomials were used in the computations.
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[25], which provides ability to simulate dynamics of peristaltic waves with more complex profiles. Both techniques do not
however affect the qualitative character of the error variations; they merely increase the threshold of a and S that leads to a
rapid error increase.
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4.1.3. Solution of the model problem #2
We shall now focus our discussion on the model problem #2, i.e., a moving boundary problem expressed in a fixed frame

of reference ðx; yÞ. Solution of the model problem #1 provides initial conditions via the reversed Galileo transformation. We
shall use the L1 norms as quantitative measures of error associated with the enforcement of flow boundary conditions, i.e.,
Fig. 11.
problem
for the
scheme
kuer;BCðx; tÞk1 ¼ sup
06X62p=a

uer;BCðx; tÞ
		 		� 


L; uer;BCðx; tÞ
		 		� 


U

n o
; ð4:13aÞ

kver;BCðx; tÞk1 ¼ sup
06X62p=a

ver;BCðx; tÞ
		 		� 


L; ver;BCðx; tÞ
		 		� 


U

n o
; ð4:13bÞ
where
ðuer;BCðx; tÞÞL;U ¼ uðx; yL;Uðx; tÞ; tÞ; ðver;BCðx; tÞÞL;U ¼ vðx; yL;Uðx; tÞ; tÞ � ðvwallÞL;Uðx; tÞ: ð4:14a;bÞ
The test problem is solved using different temporal discretizations discussed in Section 2. Fig. 11 illustrates the time history
of kuerðx; tÞk1 and demonstrates that the location of the maximum error follows the location of the maximum conduit open-
ing as it moves in the positive x-direction, similarly as in the case of solution obtained in the moving frame of reference (see
Fig. 8). The magnitude of this error remains approximately constant while several waves pass through the computational
box. Variations of the u-velocity component at a few test points are displayed in Fig. 12. The test points have the same y-
coordinates but are spaced apart in the x-direction by a distance of k=4, where k is the wavelength of the peristaltic wave.
The results show the expected phase differences associated with different locations of the test points. Both figures, i.e., Figs.
11 and 12, demonstrate the expected periodic variations in time of the computed quantities.
x

(u
er

,B
C
) U

0 1 2 3 4 5 6
-8E-11

0

8E-11

2.75T
t=2T, 3T 2.25T 2.5T

Distribution of the boundary error ðuer;BCÞU (see Eq. (4.14)) at times t = 2T, 2.25T, 2.5T, 2.75T and 3T, where T stand for one time period, for the model
#2 with the amplitude of the peristaltic wave S = 0.05, the wave number a ¼ 1:0 and the phase speed c ¼ p. Computations have been carried out

flow Reynolds number Re = 100 using NM ¼ 15 Fourier modes, NT ¼ 80 Chebyshev polynomials and the third-order implicit temporal discretization
with the time step Dt ¼ 0:001. Solution of the model problem #1 was used as the initial condition.
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4.2. Pulsatile flow

4.2.1. Problem prototype
Pulsatile flows can be modelled by replacing the flat conduit walls with elastic standing waves, which can be expressed as
Fig. 13
x ¼ p
yLðx; tÞ ¼ �1þ
Xn¼þNM

n¼�NM ;n–0

HðnÞL ðtÞeinax; yUðx; tÞ ¼ 1þ
Xn¼þNM

n¼�NM ;n–0

HðnÞL ðtÞeinax ð4:15a;bÞ
and, in the simplest case of a sinusoidal wave, the shape and motion of the walls can be described as
yLðx; tÞ ¼ �1þ S cosðxtÞ cosðaxÞ ¼ �1þ ð0:5S cosðxtÞeiax þ CCÞ; ð4:16aÞ
yUðx; tÞ ¼ 1� S cosðxtÞ cosðaxÞ ¼ 1� ð0:5S cosðxtÞeiax þ CCÞ; ð4:16bÞ
where a denotes the wave number of the standing wave, S stands for its amplitude and x denotes its frequency. In the above,
CC implies complex conjugate. The character of motion of the walls in this case is illustrated in Fig. 13.

The complete test problem consists of the discretized field Eq. (2.20), the boundary constraints (3.8a-d, 3.16), the bound-
ary motions described by (4.16) and suitable initial conditions consistent with the boundary shapes. We shall refer to this
problem as the model problem #3. For convenience, we shall use the L1 norms defined by Eq. (4.13) as quantitative mea-
sures of error associated with the enforcement of flow boundary conditions.

4.2.2. Solution of the model problem #3
Fig. 14 illustrates variations of the maximum error in the enforcement of the flow boundary condition for the u-velocity as

a function of time over two time periods. It can be seen that the magnitude of the error changes periodically in time with
frequency equal to double the frequency of the wave. The occurrence of the maximum error has certain phase lag with re-
spect to the occurrence of the maximum conduit opening, with the phase lag increasing with an increase of Re. Results dis-
played in Fig. 15 demonstrate that the time lag does not depend on the wave amplitude, which implies that this lag is a
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function of the Reynolds number and the wave frequency only. Results shown in Fig. 16 demonstrate that the magnitude of
the error can be reduced by increasing the number of Fourier modes used in the computations but its qualitative character
remains unchanged.
t

||u
er

,B
C
|| ∞

0 1 2 3 4

10-12

10-10

10-8

10-6
NM=9

12

15

Fig. 16. Variations of the kuer;BCðx; tÞk1 norm (see Eq. (4.13)) as a function of time over three time periods for the standing wave problem (model problem
#3) with the wave number a ¼ 1, the amplitude S = 0.025 and the frequency x ¼ p. Computations have been carried out for the flow Reynolds number
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The spatial distribution of the error is illustrated in Fig. 17 after 2.125 and 2.625 cycles of the wave motion, i.e., when the
error is largest (see Fig. 16). It can be seen that the maximum of the error occurs at a location corresponding to the maximum
conduit opening at a given instant of time and the magnitudes of the maxima at the two time levels are essentially identical.
The reader should note that the maximum of this error as a function of time occurs after the walls have already moved
passed the position corresponding to the maximum possible conduit opening, as discussed in the previous paragraph.

The Fourier spectra of the error in the enforcement of the u-velocity boundary conditions is given by the following
relation
Fig. 17
Fig. 16.

Fig. 18
amplitu
a ¼ 0:5
tempor
(4.16) w
uer;BCðx; tÞð ÞL;U ¼
Xn¼þ1

n¼�1
UðnÞer;BCðtÞ
� �

L;U
einax: ð4:17Þ
The computed spectra shown in Fig. 18 demonstrate that the first NM Fourier modes have been eliminated, according to the
construction of the boundary constraints described in Section 3. The largest error is associated with the first Fourier mode
omitted in the enforcement of the flow boundary conditions; the error associated with the following modes rapidly de-
creases as the mode number increases. Fig. 18 also displays results of tests carried out in order to check if the method pro-
duces any spurious spatial oscillations. Three cases were considered, i.e., in case (A) the wave was represented by the
principal Fourier mode and the calculations had been carried out with NM ¼ 5 Fourier modes, in case (B) the wave was rep-
resented by the second Fourier mode (the principal mode had the wave number a ¼ 0:5), and in case (C) the wave was rep-
resented by the third Fourier mode (the principal mode had the wave number a ¼ 1=3). In order to have fully equivalent
representations, the number of Fourier modes used in cases (B) and (C) were NM ¼ 10 and NM ¼ 15, respectively. The prob-
lem set up admitted sub-harmonics of the 1/2 type in case (B) and 1/3 type in case (C). The Fourier spectra shown in Fig. 18
demonstrate the equivalency of the results in all three cases. No sub-harmonics had been produced during the solution
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process and the modes expected to produce zero contributions in cases (B) and (C) behaved as expected. Temporal variations
of the u- and v-velocity components at a test point displayed in Fig. 19 demonstrate the expected periodic variations in time,
with the error of u being larger than error of v, as had already been discussed.

4.3. Temporal discretization

In the course of the present work we have tested four different fully-implicit temporal discretization schemes, which can
deliver first-, second-, third- and fourth-order accuracy. The schemes treat all terms implicitly resulting in a nonlinear sys-
tem of algebraic equations that has to be solved iteratively at each time step. The general form of the modal field Eq. (2.15)
can be written as
Fig. 19.
standin
@t½L1U
ðnÞ� ¼ L2U

ðnÞ þNUðnÞ; ð4:18Þ
where L1; L2 denote linear and N stands for nonlinear differential operators acting on the unknown modal functions UðnÞ.
The expression for advancing from UðnÞs at time t to UðnÞsþ1 at time t þ Dt using the first-, the second-, the third- and the fourth-
order backward-difference schemes have the forms
½Dt�1L1 � L2� UðnÞsþ1

n oJþ1
¼ N UðnÞsþ1

n oJ
þ Dt�1L1U

ðnÞ
s ; ð4:19aÞ

½ð3=2ÞDt�1L1 � L2� UðnÞsþ1

n oJþ1
¼ N UðnÞsþ1

n oJ
þ Dt�1L1½2UðnÞs � ð1=2ÞUðnÞs�1�; ð4:19bÞ

½ð11=6ÞDt�1L1 � L2� UðnÞsþ1

n oJþ1
¼ N UðnÞsþ1

n oJ
þ Dt�1L1½3UðnÞs � ð3=2ÞUðnÞs�1 þ ð1=3ÞUðnÞs�2�; ð4:19cÞ

½ð25=12ÞDt�1L1 � L2� UðnÞsþ1

n oJþ1
¼ N UðnÞsþ1

n oJ
þ Dt�1L1½4UðnÞs � 3UðnÞs�1 þ ð4=3ÞUðnÞs�2 � ð1=4ÞUðnÞs�3�; ð4:19dÞ
respectively, where the superscript J + 1 denotes the current iteration and J denotes the previous iteration The values of the
modal functions UðnÞsþ1 on the right hand side of Eqs. (4.19a)–(4.19d) associated with the nonlinear terms are initialized with
the values of UðnÞs , i.e., with the solution from the previous time step. The first-order implicit scheme is self-starting, and is
used to start the second-, the third- and the fourth-order methods. All methods were found to be numerically stable.

Computational cost of the implicit schemes cannot be predicted beforehand, as it is dominated by the number of itera-
tions required in order to solve the nonlinear algebraic equations with the specified accuracy. We have used the convergence
criteria based on the absolute difference between two subsequent solutions, and this difference had been set to 10�14 in all
tests reported in this paper. The required number of iterations is influenced by several factors including wave profiles, (e.g.,
their wave number, amplitude, phase speed, frequency), the number of Fourier modes and Chebyshev polynomials used in
the spatial discretization, the type of temporal discretization and the time step-size.

Results of the temporal grid convergence studies for the model problem #2 are reported using the error defined as
uer ¼ sup
06x62p=a

yLðx;tÞ6y6yU ðx;tÞ

judifferenceðx; y; tÞj; ð4:20Þ
where
udifferenceðx; y; tÞ ¼ uMP#2ðx; y; tÞ � uMP#1ðx; y; tÞ: ð4:21Þ
Here the term uMP#2 refers to the solution obtained through the direct solution of the moving boundary problem in the fixed
frame of reference and the term uMP#1 denotes solution of the corresponding fixed boundary problem in the moving frame of
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reference and converted into the fixed frame of reference using the reversed Galileo transformation. The results shown in
Fig. 20 corresponds to time t = 1.0 and demonstrate that all the temporal schemes deliver the theoretically predicted
accuracy.

4.4. Computational efficiency and effectiveness

All implicit algorithms require solution of a large system of nonlinear algebraic equations at each time step. The nonlinear
system is solved in an iterative manner, i.e., the nonlinear terms are moved to the right hand side and the resulting linear
system is solved repetitively with the right hand side being updated after each iteration. The solution process requires eval-
uation of the inverse (or equivalent) of the coefficient matrix only once for the first iteration, with subsequent iterations re-
duced to multiplication of the inverse (or equivalent) with the recomputed right hand side vector. Because of the size of the
system, one needs to evaluate the performance of various possible solution strategies of the relevant linear system.

The linear system has the form
0

A

Fig. 20.
problem
numbe
the init
Lx ¼ R; ð4:22Þ
where L is a p� p coefficient matrix with p ¼ ð2NM þ 1ÞðNT þ 1Þ, x is a p-dimensional column vector of unknowns and R is a
p-dimensional column vector representing information contained in the nonlinear terms and taken either from the previous
time step or from the previous iteration. The system is organized by grouping entries corresponding to the linear part of the
field equations in matrix H of size q� p; q ¼ ð2NM þ 1ÞðNT � 3Þ, and entries corresponding to boundary relations in matrix K
of size (p � q) � p, resulting in the structure of coefficient matrix L illustrated in Fig. 21. Matrix H has the block-diagonal
structure with each block corresponding to a different modal equation and having the size ðNT þ 1Þ � ðNT � 3Þ. This matrix
needs to be computed only ones as it does not depend on boundary motions. Matrix K is full as it provides coupling between
different modes and it needs to be recomputed at each time step in order to capture boundary motions. Structure of matrix L
illustrates advantage of the IBC algorithm. Algorithms based on the dynamic grid adjustments and/or mappings require an
effort equivalent to evaluation of the complete coefficient matrix L at each time step while the IBC algorithm requires eval-
uation of only matrix K which represents a small portion of the complete matrix L. The additional cost associated with the
evaluation of the complete matrix can be illustrated using the domain transformation (DM) method discussed in the context
of the test problem #1 as a representative of the methods requiring grid adjustment. Fig. 22 shows the ratio of time required
to construct the coefficient matrix for the DT and the IBC methods using different numbers of Fourier modes NM and Cheby-
shev polynomials NT . The IBC method requires approximately 30 times less time for the smaller values of NM and NT and the
savings increase almost linearly with the increase of either NM or NT . The cost of the matrix construction for the dynamic grid
methods further significantly increases (relative to the IBC method) if the grid adjustment needs to rely on the numerical
grid generation.

Eq. (4.22) can be solved directly using various algorithms, with potential efficiency gains associated with taking advan-
tage of the sparse character of the coefficient matrix. We have tested four different methods in an effort to find an efficient
solution strategy.

(i) Method A: This method relies on the LU decomposition. The lower and upper triangular matrices are computed at the
beginning of each time step and the subsequent iterations are reduced to a simple backward eliminations and forward
substitutions in a repetitive fashion.

(ii) Method B: The solution process for this method is also based on LU decomposition, however, it takes advantage of the
sparse structure of the coefficient matrix L and uses specialized solver for computing LU factors of sparse matrices.
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Fig. 21. Structure of the coefficient matrix for the model problem #2 constructed using NM ¼ 3 Fourier modes and NT ¼ 30 Chebyshev polynomials. Non-
zero entries are marked in black.
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(iii) Method C: The inverse of the coefficient matrix L is computed once at the beginning of each time step and the subse-
quent iterations are reduced to the multiplication of the inverted matrix with the updated right hand side vector.

(iv) Method D: Similar to method C this method computes the inverse of the coefficient matrix using specialized proce-
dures for sparse matrices.

Method A is used as the reference method in the following discussion. The ‘‘performance gain” achieved by other methods
can be quantified as the ratio of computational time involved in advancing solution by one time step using method in ques-
tion to that required by method A. Fig. 23 illustrates performance gains of methods B, C and D. It can be seen that method B is
the most efficient while method D is the least efficient. The efficiency of methods B and C depends very little on the problem
size, while the efficiency of method B increases almost linearly from 	1.15 to 	1.5 when increasing the number of blocks of
the same size (Fig. 23a). The efficiency of this method is almost unchanged when one works with a constant number of
blocks of increasing size (Fig. 23b).

When a large number of Fourier modes and/or Chebyshev polynomials are used, the resulting matrix could be very large
leading to the computationally unacceptable solution cost, in spite of a minimal cost associated with the generation of ma-
trix L at each time step. The solution cost can be reduced using iterative solver based on the mode decoupling concept
[22,23]. It had been demonstrated that such solvers lead to a significant acceleration of computations in the case of flows
governed by linear operators, with further efficiency gains possible through parallelization as the mode decoupling method
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is very suitable for applications on distributed processors. On the negative side, the iterative algorithm limits the range of
geometries that can be accessed due to convergence problems, as documented in the context of linear operators [22,23].
The convergence problems are more severe in the case of nonlinear operators, which further limit the range of geometries
that can be modeled.

Because limitations associated with the iterative solver deemed to be too constraining, a new direct solver has been
developed following concepts described in [26] where advantage was taken of the fact that part H of the matrix L does
not change during time advancement. Part of this matrix can be inverted once and the overall solution can be reduced to
a solution of a much smaller algebraic system supplemented by multiplication by the inverted matrix. The largest square
matrix that can be extracted from H has the size q� q. For that purpose, the vector of unknowns has been re-organized
by re-locating the first four coefficients of Chebyshev expansions for each Fourier mode to the end of the vector resulting
in the structure of coefficient matrix illustrated in Fig. 24. Square matrix A of size q� q has block-diagonal structure with
each block of size ðNT � 3Þ � ðNT � 3Þ, rectangular matrix B of size q� ðp� qÞ has block-diagonal structure with each block
of size ðNT � 3Þ � 4, full rectangular matrix C has size ðp� qÞ � q and the square matrix D has size ðp� qÞ � ðp� qÞ. Matrices
A and B remain unchanged during time advancement while C and D need to be recomputed. The system can be written as
Fig. 24
polynom
Ax1 þ Bx2 ¼ R1; Cx1 þ Dx2 ¼ R2; ð4:23a;bÞ
where vector x1 contains unknowns ZðnÞk for n 2 h�NM ;NMi; k 2 h4;NTi, and x2 contains unknowns ZðnÞk for
n 2 h�NM;NMi; k 2 h0;3i. The right hand side vector remains unchanged with R1 þ R2 ¼ R; R1 having length q and R2 having
. Structure of the modified coefficient matrix for the model problem #2 constructed using NM ¼ 3 Fourier modes and NT ¼ 30 Chebyshev
ials (see Eqs. (4.23–4.24)). Non-zero entries are marked in black.
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length ðp� qÞ. Matrices B and D contain information associated with ZðnÞ0 ; ZðnÞ1 ; ZðnÞ2 and ZðnÞ3 , while matrices A and C contain the
rest. Solution of (4.23) can be written as
A

Fig. 25.
modes
carried
dashed
x2 ¼ E�1R2 � E�1CA�1R1; x1 ¼ A�1R1 � A�1Bx2; ð4:24a;bÞ
where E ¼ ðD� CA�1BÞ has the size ðp� qÞ � ðp� qÞ. Matrices A�1 and A�1B need to be computed only once and remain un-
changed during time advancement; the main computational effort at each time step is reduced to solving a system of equa-
tion of the size ðp� qÞ � ðp� qÞ resulting in method E.

v) Method E: Method based on Eqs. (4.23)–(4.24) where all operations equivalent to evaluation of the inverse matrices
are carried out using LU decomposition.

Fig. 25 shows that performance gains vary approximately from 1.5 to 5 depending on the severity of geometry and prob-
lem size, and are approximately the same regardless if one uses more smaller blocks (more Fourier modes, Fig. 25a) or works
with fewer but larger blocks (more Chebyshev polynomials, Fig. 25b). The reader should note that an increase of severity of
boundary motions (larger amplitude S of boundary motions) increases the number of iterations required per time step. Since
the largest performance gains are associated with the first iteration, the performance gains for the more extreme wave pro-
files are less pronounced. In a similar way, use of smaller time steps reduces advantage of this method as it decreases the
number of iterations per time step.

Method E can be further improved by taking advantage of the block-diagonal structure of matrix A, which results in
method F.

vi) Method F: The inverses A�1 and A�1B are computed by inverting individual blocks (rather than inverting the whole
matrices) using the LU decomposition.

Fig. 25 illustrates that performance gains associated with method F vary from 4 to 12 depending on the severity of geom-
etry and problem size, similarly as in the case of method E. These gains increase rapidly with an increasing number of Fourier
modes and Chebyshev polynomials, and are approximately the same regardless if one uses more smaller blocks (more Fou-
rier modes, Fig. 25a) or works with fewer but larger blocks (more Chebyshev polynomials, Fig. 25b). Similarly to method E,
this method performs slightly better for the less severe geometries and for smaller time step sizes, which result in a fewer
iterations per time step.

It is of interest to summarize relative advantages of the IBC method as compared with the methods based on the dynamic
grid adjustment represented in this discussion by the DT method. The IBC method requires the construction of the H matrix
only once while the elements corresponding to the relatively smaller K matrix need to be computed at every time step. In
contrast, the complete coefficient matrix needs to be computed at each time step for the DT method at an additional cost
already discussed at the beginning of this section. Here the reader should note that the results presented in Fig. 22 compare
costs of construction of the complete matrices for both methods while in the actual implementation a much smaller matrix K
needs to be computed at each time step for the IBC method. Use of method F for solving the resulting linear system further
increases the relative gains of the IBC method. The DT method leads to the full coefficient matrix and the cost of solution of
the linear system is similar to the cost associated with method A of the IBC implementation; the relative gains of IBC meth-
odology resulting from the use of specialized solver (method F) are illustrated in Fig. 25.

Memory requirement provides a second limitation for the applicability of the algorithm. The most common implemen-
tations of the IBC algorithm of the type discussed here rely on the construction of the complete matrix L [21–23] resulting in
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extreme memory requirements when a large number of Fourier modes and Chebyshev polynomials need to be used. Method
F requires storage for matrices B, C, D and only for the diagonal blocks of matrix A. The memory requirement can be further
reduced by noting that the information about the diagonal blocks can be overwritten with the information about the in-
verted blocks. Fig. 26 illustrates variations of the ratio of the memory use by methods A and F. It can be seen that in the case
of NM ¼ 25 Fourier modes and NT ¼ 120 Chebyshev polynomials method F uses about 20 times less memory than method A.
The memory gains increase almost linearly and very rapidly when the number of Fourier modes NM increases (resulting in a
larger number of blocks). The memory gains change very little as the number of Chebyshev polynomials NT increases (result-
ing in larger blocks – see Fig. 26).

The final comment deals with the memory use associated with the methods based on the dynamic grid adjustment rep-
resented in this discussion by the DT method. This method leads to the full matrix and offers effectively no potential for
memory savings.

5. Conclusions

A highly accurate algorithm to analyze unsteady flow problems associated with the presence of moving boundaries has
been presented. The algorithm relies on the concept of immersed boundary conditions where the time-varying flow domain
remains completely immersed inside a fixed computational domain during simulation time. The flow boundary conditions
are imposed in the form of constraints. The algorithm uses Fourier expansions in the streamwise direction, Chebyshev
expansions in the wall–normal direction and fully-implicit time discretization with up to fourth-order accuracy. Various
tests demonstrate that the algorithm delivers spectral accuracy in space and the theoretically predicted accuracy in time.
The entries in the coefficient matrix corresponding to the field equations remain unchanged during boundary motions
due to the use of the immersed boundaries concept. As a result, only a small part of the coefficient matrix corresponding
to boundary constraints needs to be recomputed at each time step resulting in a significant saving of computing resources.
A very efficient linear solver that takes advantage of the structure of the coefficient matrix has been proposed. The proposed
solver results in a significant acceleration of the computations as well as in a substantial reduction of memory requirements.
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Appendix A. A.1. First-order implicit temporal discretization

Temporal discretization of (2.15) using the first-order implicit method results in the following equation
�Re�1C4 bD4 þ C2Re�1Dt�1 þ 2n2a2C2Re�1 þ inaC2u0

� �bD2

þ �n4a4Re�1 � n2a2C2Dt�1Re�1 � inaC2 bD2u0 � in3a3u0

� �
264

375
� UðnÞsþ1

� �Jþ1
¼ �inaCbDðR1ÞðnÞsþ1 � C2 bD2ðR2ÞðnÞsþ1 � ðnaÞ2ðR2ÞðnÞsþ1 þ inaCbDðR3ÞðnÞsþ1

h iJ

þ Re�1Dt�1½C2 bD2 � ðnaÞ2�UðnÞs ; n 2 h0;NMi: ðA1Þ
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A.2. Second-order implicit temporal discretization

Temporal discretization of (2.15) using the second-order implicit method results in the following equation
�Re�1C4 bD4 þ 3C2Re�1Dt�1=2þ 2n2a2C2Re�1 þ inaC2u0

� �bD2

þ �n4a4Re�1 � 3n2a2C2Dt�1Re�1=2� inaC2 bD2u0 � in3a3u0

� �
264

375
� UðnÞsþ1

� �Jþ1
¼ �inaCbDðR1ÞðnÞsþ1 � C2 bD2ðR2ÞðnÞsþ1 � ðnaÞ2ðR2ÞðnÞsþ1 þ inaCbDðR3ÞðnÞsþ1

h iJ

þ 2Re�1Dt�1 C2 bD2 � ðnaÞ2
h i

UðnÞs � 0:5Re�1Dt�1 C2 bD2 � ðnaÞ2
h i

UðnÞs�1; n 2 h0;NMi: ðA2Þ
A.3. Fourth-order implicit temporal discretization

Temporal discretization of (2.15) using the fourth-order implicit method results in the following equation
�Re�1C4 bD4 þ 25C2Re�1Dt�1=12þ 2n2a2C2Re�1 þ inaC2u0

� �bD2

þ �n4a4Re�1 � 25n2a2C2Dt�1Re�1=12� inaC2 bD2u0 � in3a3u0

� �
264

375 UðnÞsþ1

� �Jþ1

¼ �inaCbDðR1ÞðnÞsþ1 � C2 bD2ðR2ÞðnÞsþ1 � ðnaÞ2ðR2ÞðnÞsþ1 þ inaCbDðR3ÞðnÞsþ1

h iJ

þ 4Re�1Dt�1½C2 bD2 � ðnaÞ2�UðnÞs � 3Re�1Dt�1½C2 bD2 � ðnaÞ2�UðnÞs�1

þ ð4=3ÞRe�1Dt�1½C2 bD2 � ðnaÞ2�UðnÞs�2 � ð1=4ÞRe�1Dt�1 C2 bD2 � ðnaÞ2
h i

UðnÞs�2; n 2 h0;NMi: ðA3Þ
Appendix B. Algorithm for evaluation of coefficients wðmÞk;sþ1 and dðmÞk;sþ1 appearing in Eq. (3.4).

Coefficients in Eq. (3.4a) can be evaluated with the help of the recurrence relation Tkþ1ðŷÞ ¼ 2ŷTkðŷÞ � Tk�1ðŷÞ that leads to
wðmÞkþ1;sþ1 ¼ 2
Xn¼þ1

n¼�1
AðnÞsþ1wðm�nÞ

k;sþ1 �wðmÞk�1;sþ1 for k > 1; ðB1Þ
whose evaluation begins at k = 0, giving the initial terms in the form
wð0Þ0;sþ1 ¼ 1;wðmÞ0;sþ1 ¼ 0 for jmjP 1; wðmÞ1;sþ1 ¼ AðmÞsþ1 for jmjP 0: ðB2Þ
Coefficients in Eq. (3.4b) can be evaluated with the help of the recurrence relation DTkþ1ðŷÞ ¼ 2TkðŷÞ þ 2ŷDTkðŷÞ � DTk�1ðŷÞ
that leads to a relation
dðmÞkþ1;sþ1 ¼ 2
X1

n¼�1
AðnÞsþ1dðm�nÞ

k;sþ1 � dðmÞk�1;sþ1 þ 2wðmÞk;sþ1 for k > 2; ðB3Þ
whose evaluation begins at k = 0, giving the initial terms in the form
dðmÞ0;sþ1 ¼ 0 for jmjP 0; dð0Þ1;sþ1 ¼ 1; dðmÞ1;sþ1 ¼ 0 for jmjP 1; dðmÞ2;sþ1 ¼ 4AðmÞsþ1 for jmjP 0: ðB4Þ
Appendix C. Domain transformation method for the model problem#1 in the moving frame of reference

The irregular conduit geometry in the physical domain ðX; yÞ is mapped into a straight conduit in the computational do-
main ðn;gÞ using transformations in the form
n ¼ X; g ¼ ½2y� yUðXÞ � yLðXÞ�=½yUðXÞ � yLðXÞ�: ðc1Þ
Application of transformations given in Eq. (A1) brings Eq. (4.4) into the form
@ggggW1 þ B1ðn;gÞ@gggW1 þ B2ðn;gÞ@ggW1 þ B3ðn;gÞ@gW1 þ B4ðn;gÞ@ngggW1 þ B5ðn;gÞ@nggW1

þ B6ðn;gÞ@ngW1 þ B7ðn;gÞ@nngW1 þ B8ðn;gÞ@nnggW1 þ B9ðn;gÞ@nnngW1 þ B10ðn;gÞ@nW1

þ B11ðn;gÞ@nnnW1 þ B12ðn;gÞ@nnnnW1 ¼ L1ðn;gÞ@nghN1i þ L2ðn;gÞ@ghN1i þ L3ðn;gÞ@gghN1i
þ L4ðn;gÞ@gghN2i þ L5ðn;gÞ@ghN2i þ L6ðn;gÞ@nghN2i þ L5ðn;gÞ@nghN2i; ðc2Þ
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where
hN1i ¼ hu1u1i � hv1v1i; hN2i ¼ hu1v1i; ðC3a-bÞ

B0ðn;gÞ ¼ g4
X þ 2g2

Xg
2
y þ g4

y ; ðC4aÞ

B1ðn;gÞ ¼ 6g2
XgXX þ 2gXXg

2
y þ 8gXgygXy þ ðc � u0ReÞ g3

X � gXg
2
y

� �h i
=B0ðn;gÞ; ðC4bÞ

B2ðn;gÞ ¼ 3g2
XX þ 4gXgXXX þ 4gXXygy þ 4g2

Xy þ ðc � u0ReÞ 3gXgXX þ 2gXygy

� �h i
=B0ðn;gÞ; ðC4cÞ

B3ðn;gÞ ¼ gXXXX þ cgXXX � Re u0gXXX þ 2gXð Þ½ �=B0ðn;gÞ; ðC4dÞ

B4ðn;gÞ ¼ 4g3
X þ 4gXg

2
y

� �
=B0ðn;gÞ; ðC4eÞ

B5ðn;gÞ ¼ 12gXgXX þ 8gXygy þ ðc � u0ReÞ 3g2
X þ g2

y

� �h i
=B0ðn;gÞ; ðC4fÞ

B6ðn;gÞ ¼ 4gXXX þ 3ðc � u0ReÞgXXð Þ=B0ðn;gÞ; ðC4gÞ
B7ðn;gÞ ¼ 6gXX þ 3ðc� u0ReÞgXð Þ=B0ðn;gÞ; ðC4hÞ

B8ðn;gÞ ¼ 6g2
X þ 2g2

y

� �
=B0ðn;gÞ; ðC4iÞ

B9ðn;gÞ ¼ 4gX=B0ðn;gÞ; ðC4jÞ
B10ðn;gÞ ¼ �2Re=B0ðn;gÞ; ðC4kÞ
B11ðn;gÞ ¼ ðc � u0ReÞ=B0ðn;gÞ; ðC4lÞ
B12ðn;gÞ ¼ 1=B0ðn;gÞ; ðC4mÞ

L1ðn;gÞ ¼ Regy=B0ðn;gÞ; ðC5aÞ
L2ðn;gÞ ¼ RegXy=B0ðn;gÞ; ðC5bÞ
L3ðn;gÞ ¼ RegXgXy=B0ðn;gÞ; ðC5cÞ

L4ðn;gÞ ¼ Re g2
y � g2

X

� �
=B0ðn;gÞ; ðC5dÞ

L5ðn;gÞ ¼ �RegXX=B0ðn;gÞ; ðC5eÞ
L6ðn;gÞ ¼ �2RegX=B0ðn;gÞ; ðC5fÞ
L7ðn;gÞ ¼ �Re=B0ðn;gÞ: ðC5gÞ
In the above
gX ¼ � ð1þ gÞðyUÞn þ ð1� gÞðyLÞn
h i

=ðyU � yLÞ; ðC6aÞ

gXX ¼ � 2gxfðyUÞn � ðyLÞng þ ð1þ gÞðyUÞnn þ ð1� gÞðyLÞnn

h i
=ðyU � yLÞ; ðC6bÞ

gXXX ¼ �
3gxxfðyUÞn � ðyLÞng þ 3gxfðyUÞnn � ðyLÞnngþ
ð1þ gÞðyUÞnnn þ ð1� gÞðyLÞnnn

" #
=ðyU � yLÞ; ðC6cÞ

gXXXX ¼ �
4gxxxfðyUÞn � ðyLÞng þ 6gxxfðyUÞnn � ðyLÞnngþ
4gxfðyUÞnnn � ðyLÞnnng þ ð1þ gÞðyUÞnnnn þ ð1� gÞðyLÞnnnn

" #
=ðyU � yLÞ; ðC6dÞ

gy ¼ 2=ðyU � yLÞ; ðC6eÞ

gXy ¼ � gyfðyUÞn � ðyLÞng
h i

=ðyU � yLÞ; ðC6fÞ

gXXy ¼ � 2gxyfðyUÞn � ðyLÞng þ gyfðyUÞnn � ðyLÞnng
h i

=ðyU � yLÞ; ðC6gÞ

gXXXy ¼ � 3gxxyfðyUÞn � ðyLÞng þ 3gxyfðyUÞnn � ðyLÞnng þ gyfðyUÞnnn � ðyLÞnnng
h i

=ðyU � yLÞ: ðC6hÞ
Definition of the stream function given by Eq. (2.8) remains unchanged and thus the velocity components can be expressed
as
uðn;gÞ ¼ u0ðn;gÞ þ u1ðn;gÞ ¼ u0ðn;gÞ þ gy@gW1 ¼ gy@gWT ;

vðn;gÞ ¼ v1ðn;gÞ ¼ �@nW1 � gx@gW1 ¼ �@nWT � gx@gWT :
ðC7a-bÞ
The boundary conditions for the problem are given by the following relations
gy@gW1ðn;�1Þ ¼ �u0ðn;�1Þ; gy@gW1ðn;þ1Þ ¼ �u0ðn;þ1Þ;
@nW1ðn;�1Þ þ gx@gW1ðn;�1Þ ¼ ðyLÞ

0
@nW1ðn;þ1Þ þ gx@gW1ðn;þ1Þ ¼ ðyUÞ

0
: ðC8a-bÞ
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Solution of (c2) is assumed in terms of a Fourier expansion, i.e.,
W1ðn;gÞ ¼
Xn¼þ1

n¼�1
/ðnÞðgÞeinan �

Xn¼þNM

n¼�NM

/ðnÞðgÞeinan ðC9Þ
where /ðnÞ ¼ /ð�nÞ� and star denotes complex conjugates. The coefficients BNðn;gÞ; N ¼ 1; . . . ;12 and LMðn;gÞ; M ¼ 1; . . . ;7
are be replaced by the Fourier expansions in the form
BNðn;gÞ ¼
Xm¼þ2NM

m¼�2NM

bðmÞN ðgÞeiman; LMðn;gÞ ¼
Xm¼þ2NM

m¼�2NM

gðmÞM ðgÞeiman: ðC10Þ
The nonlinear terms hN1i and hN2i are also expressed as Fourier expansions, i.e.,
hN1iðn;gÞ ¼
Xn¼þNM

n¼�NM

cðnÞ1 ðgÞeinan; hN2iðn;gÞ ¼
Xn¼þNM

n¼�NM

cðnÞ2 ðgÞeinan: ðC11Þ
Substitution of C9, C10 and C11 into (c2) and separation of Fourier components lead to the modal equations in the form
D4/ðnÞ þ
Xm¼þNM

m¼�NM

½bðn�mÞ
1 þ ðimaÞbðn�mÞ

4 �D3/ðmÞ

þ½bðn�mÞ
2 þ ðimaÞbðn�mÞ

5 � ðmaÞ2bðn�mÞ
8 �D2/ðmÞ

þ½bðn�mÞ
3 þ ðimaÞbðn�mÞ

6 � ðmaÞ2bðn�mÞ
7 � iðmaÞ3bðn�mÞ

9 �D/ðmÞ

þ½ðimaÞbðn�mÞ
10 � iðmaÞ3bðn�mÞ

11 þ ðmaÞ4bðn�mÞ
12 �/ðmÞ

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼

Xm¼þNM

m¼�NM

½gðn�mÞ
2 þ ðimaÞgðn�mÞ

1 �DcðmÞ1 þ ½gðn�mÞ
3 �D2cðmÞ1

½gðn�mÞ
4 �D2cðmÞ2 þ ½gðn�mÞ

5 þ ðimaÞgðn�mÞ
6 �DcðmÞ2

þ½�ðmaÞ2gðn�mÞ
7 �cðmÞ2

8>><>>:
9>>=>>;; ðC12Þ
where D ¼ d=dg and n ¼ 0; . . . ;NM , with each equation requiring four boundary conditions.
Boundary conditions (C8) need to be re-arranged into a more suitable form. The known reference flow at the boundaries

u0ðn;�1Þ can expressed as Fourier expansions in the form
u0ðn;�1Þ ¼
Xn¼þNM

n¼�NM

bF ðnÞL einan; u0ðn;þ1Þ ¼
Xn¼þNM

n¼�NM

bF ðnÞU einan: ðC13a;bÞ
Boundary conditions (C8c–d) can be re-arranged with the help of (C8a–b) into the following form
@nWðn;�1Þ ¼ ðgx=gyÞu0ðn;�1Þ � c
Xn¼þNM

n¼�NM ;n–0

inaHðnÞL einan;

@nWðn;þ1Þ ¼ ðgx=gyÞu0ðn;þ1Þ � c
Xn¼þNM

n¼�NM ;n–0

inaHðnÞU einan: ðC14a-bÞ
All the terms in the right hand side of (C14) are known and thus can be expanded using Fourier series with known coeffi-
cients as
ðgx=gyÞu0ðn;�1Þ � c
Xn¼þNM

n¼�NM ;n–0

inaHðnÞL einan ¼
Xn¼þNM

n¼�NM

bEðnÞL einan;

ðgx=gyÞu0ðn;þ1Þ � c
Xn¼þNM

n¼�NM ;n–0

inaHðnÞU einan ¼
Xn¼þNM

n¼�NM

bEðnÞU einan: ðC15a-bÞ
The boundary conditions can now be expressed in terms of the unknown modal functions /ðnÞðgÞ in the form
D/ðnÞð�1Þ ¼ �bF ðnÞL for jnjP 0; D/ðnÞðþ1Þ ¼ �bF ðnÞU for jnjP 0;

/ðnÞð�1Þ ¼ bEðnÞL =ðinaÞ for n–0; /ðnÞðþ1Þ ¼ bEðnÞU =ðinaÞ for n–0: ðC16a-dÞ
Two more conditions are required to close the problem formulation. One condition is arbitrary and is associated with the
definition of the stream function. The constant mass flux constraint has been selected as the second condition for this model
problem. Eqs. (C7) and (C8) lead to
@nWTðn;�1Þ ¼ c
Xn¼þNM

n¼�NM ;n–0

inaHðnÞL einan; ðC17Þ
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where gx@gWTðn;�1Þ ¼ uðn;�1Þ ¼ 0. Integrating the above equation along n results in
W1ðn;�1Þ ¼ c
Xn¼þNM

n¼�NM ;n–0

HðnÞL einan �W0ðn;�1Þ þ ðconstÞL: ðC18aÞ
Similar expression for the upper wall takes the form
W1ðn;þ1Þ ¼ c
Xn¼þNM

n¼�NM ;n–0

HðnÞU einan �W0ðn;þ1Þ þ ðconstÞU : ðC18bÞ
As the definition of stream function is accurate up to a constant, we can arbitrarily assign the value of the stream function to
be zero at n ¼ 0, which results in
ðconstÞL ¼ �c
Xn¼þNM

n¼�NM ;n–0

HðnÞL : ðC19Þ
Volume flux Q along the conduit can be evaluated by integrating the x-velocity component across the conduit, i.e.,
QðXÞ ¼
Z yU

yL

uðX; yÞdy: ðC20Þ
In the ðn;gÞ coordinates the expression for the volume flux Q becomes
QðnÞ ¼
Z þ1

�1
ð@gWÞdg ¼ W0ðn;þ1Þ þW1ðn;þ1Þ �W0ðn;�1Þ �W1ðn;�1Þ; ðC21Þ
where the W0ðn;�1Þ and W0ðn;þ1Þ are known from the solution of the reference Poiseuille flow and can be expressed in
terms of Fourier series as
W0ðn;�1Þ ¼
Xn¼þNM

n¼�NM

P
ðnÞ
L einan; W0ðn;þ1Þ ¼

Xn¼þNM

n¼�NM

P
ðnÞ
U einan: ðC22Þ
The volume flux can be written in the form of Fourier expansion
QðnÞ ¼
Xn¼þNM

n¼�NM

bQ ðnÞeinan; ðC23Þ
where the zero term, i.e., bQ ð0Þ, represents the net mass flux along the conduit. Substitution of Eqs. (C22), (C23) and (C19) into
Eq. (C21) and extraction of mode zero results in
ðconstÞU ¼ bQ ð0Þ � c
Xn¼þNM

n¼�NM ;n–0

HðnÞL : ðC24Þ
Substitution of Eqs. (C9), (C19), (C22) and (C24) into Eq. (C18) and separation of mode zero results in the two closing bound-
ary conditions in the form
/ð0Þð�1Þ ¼ Pð0ÞL � c
Xn¼þNM

n¼�NM ;n–0

HðnÞL ;

/ð0Þðþ1Þ ¼ Pð0ÞU � c
Xn¼þNM

n¼�NM ;n–0

HðnÞL þ bQ ð0Þ:
ðC25a;bÞ
The unknown /ðnÞðgÞ can be expressed with spectral accuracy using Chebyshev expansion in the form
/ðnÞðgÞ ¼
Xk¼1
k¼0

SðnÞk TkðgÞ �
Xk¼NT

k¼0

SðnÞk TkðgÞ: ðC26Þ
Application of Galerkin procedure to Eq. (C12), as described in Section 3, leads to NT � 3 algebraic equations in terms of the
unknown coefficients SðnÞk for each Fourier mode. The remaining closing conditions come from discretization of the boundary
conditions given by Eqs. (C16) and (C25). Solution of the complete problem involves an iterative process.
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